Installation
The mice package can be installed from CRAN as
follows:
install.packages("mice")The latest version can be installed from GitHub as follows:
install.packages("devtools")
devtools::install_github("amices/mice")Capabilities of mice package
The mice package contains functions to
- Inspect the missing data pattern
- Impute the missing data times, resulting in completed data sets
- Diagnose the quality of the imputed values
- Analyze each completed data set
- Pool the results of the repeated analyses
- Store and export the imputed data in various formats
- Generate simulated incomplete data
- Incorporate custom imputation methods
- Choose which cells to impute
Main functions
The main functions in the mice package are:
| Function name | Description |
|---|---|
| mice() | Impute the missing data times |
| with() | Analyze completed data sets |
| pool() | Combine parameter estimates |
| complete() | Export imputed data |
| ampute() | Generate missing data |
Vignettes
- Ad hoc methods and the MICE algorithm
- Convergence and pooling
- Inspecting how the observed data and missingness are related
- Passive imputation and post-processing
- Combining inferences
- Imputing multilevel data
- Sensitivity
analysis with
mice - Generate
missing values with
ampute parlMICE: Parallel MICE imputation wrapperfuturemice: Wrapper for parallel MICE imputation through futures
Further reading
- mice: Multivariate Imputation by Chained Equations in R in the Journal of Statistical Software (S. van Buuren and Groothuis-Oudshoorn 2011).
- The first application on missing blood pressure data (S. van Buuren, Boshuizen, and Knook 1999).
- Term Fully Conditional Specification describes a general class of methods that specify imputations model for multivariate data as a set of conditional distributions (S. van Buuren et al. 2006).
- Details about imputing mixes of numerical and categorical data can be found in (S. van Buuren 2007).
- Book Flexible Imputation of Missing Data. Second Edition (Stef van Buuren 2018).
References
van Buuren, S. 2007. “Multiple Imputation of Discrete and
Continuous Data by Fully Conditional Specification.”
Statistical Methods in Medical Research 16 (3): 219–42. https://doi.org/10.1177/0962280206074463.
van Buuren, S., H. C. Boshuizen, and D. L. Knook. 1999. “Multiple
Imputation of Missing Blood Pressure Covariates in Survival
Analysis.” Statistics in Medicine 18 (6): 681–94. https://doi.org/10.1002/(sici)1097-0258(19990330)18:6<681::aid-sim71>3.0.co;2-r.
van Buuren, S., J. P. L. Brand, C. G. M. Groothuis-Oudshoorn, and D. B.
Rubin. 2006. “Fully Conditional Specification in Multivariate
Imputation.” Journal of Statistical Computation and
Simulation 76 (12): 1049–64. https://doi.org/10.1080/10629360600810434.
van Buuren, S., and K. Groothuis-Oudshoorn. 2011. “mice: Multivariate
Imputation by Chained Equations
in R.” Journal of Statistical Software 45
(3): 1–67. https://doi.org/10.18637/jss.v045.i03.
van Buuren, Stef. 2018. Flexible Imputation of Missing Data.
2nd ed. Interdisciplinary Statistics Series. Chapman and Hall/CRC. https://doi.org/10.1201/9780429492259.
