The D3-statistic is a likelihood-ratio test statistic.
Arguments
- fit1
An object of class
mira
, produced bywith()
.- fit0
An object of class
mira
, produced bywith()
. The model infit0
is a nested withinfit1
. The default null modelfit0 = NULL
comparesfit1
to the intercept-only model.- dfcom
A single number denoting the complete-data degrees of freedom of model
fit1
. If not specified, it is set equal todf.residual
of modelfit1
. If that cannot be done, the procedure assumes (perhaps incorrectly) a large sample.- df.com
Deprecated
Details
The D3()
function implement the LR-method by
Meng and Rubin (1992). The implementation of the method relies
on the broom
package, the standard update
mechanism
for statistical models in R
and the offset
function.
The function calculates m
repetitions of the full
(or null) models, calculates the mean of the estimates of the
(fixed) parameter coefficients \(\beta\). For each imputed
imputed dataset, it calculates the likelihood for the model with
the parameters constrained to \(\beta\).
The mitml::testModels()
function offers similar functionality
for a subset of statistical models. Results of mice::D3()
and
mitml::testModels()
differ in multilevel models because the
testModels()
also constrains the variance components parameters.
For more details on
References
Meng, X. L., and D. B. Rubin. 1992. Performing Likelihood Ratio Tests with Multiply-Imputed Data Sets. Biometrika, 79 (1): 103–11.
https://stefvanbuuren.name/fimd/sec-multiparameter.html#sec:likelihoodratio
Examples
# Compare two linear models:
imp <- mice(nhanes2, seed = 51009, print = FALSE)
mi1 <- with(data = imp, expr = lm(bmi ~ age + hyp + chl))
mi0 <- with(data = imp, expr = lm(bmi ~ age + hyp))
D3(mi1, mi0)
#> test statistic df1 df2 dfcom p.value riv
#> 1 ~~ 2 2.917381 1 8.764849 20 0.122711 2.082143
if (FALSE) { # \dontrun{
# Compare two logistic regression models
imp <- mice(boys, maxit = 2, print = FALSE)
fit1 <- with(imp, glm(gen > levels(gen)[1] ~ hgt + hc + reg, family = binomial))
fit0 <- with(imp, glm(gen > levels(gen)[1] ~ hgt + hc, family = binomial))
D3(fit1, fit0)
} # }