Number of observations per variable pair.
Value
A list of four components named rr
, rm
, mr
and
mm
. Each component is square numerical matrix containing the number
observations within four missing data pattern.
Details
The four components in the output value is have the following interpretation:
- list('rr')
response-response, both variables are observed
- list('rm')
response-missing, row observed, column missing
- list('mr')
missing -response, row missing, column observed
- list('mm')
missing -missing, both variables are missing
References
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice
:
Multivariate Imputation by Chained Equations in R
. Journal of
Statistical Software, 45(3), 1-67.
doi:10.18637/jss.v045.i03
Examples
pat <- md.pairs(nhanes)
pat
#> $rr
#> age bmi hyp chl
#> age 25 16 17 15
#> bmi 16 16 16 13
#> hyp 17 16 17 14
#> chl 15 13 14 15
#>
#> $rm
#> age bmi hyp chl
#> age 0 9 8 10
#> bmi 0 0 0 3
#> hyp 0 1 0 3
#> chl 0 2 1 0
#>
#> $mr
#> age bmi hyp chl
#> age 0 0 0 0
#> bmi 9 0 1 2
#> hyp 8 0 0 1
#> chl 10 3 3 0
#>
#> $mm
#> age bmi hyp chl
#> age 0 0 0 0
#> bmi 0 9 8 7
#> hyp 0 8 8 7
#> chl 0 7 7 10
#>
# show that these four matrices decompose the total sample size
# for each pair
pat$rr + pat$rm + pat$mr + pat$mm
#> age bmi hyp chl
#> age 25 25 25 25
#> bmi 25 25 25 25
#> hyp 25 25 25 25
#> chl 25 25 25 25
# percentage of usable cases to impute row variable from column variable
round(100 * pat$mr / (pat$mr + pat$mm))
#> age bmi hyp chl
#> age NaN NaN NaN NaN
#> bmi 100 0 11 22
#> hyp 100 0 0 12
#> chl 100 30 30 0