Imputes univariate missing data using a two-level normal model
Arguments
- y
Vector to be imputed
- ry
Logical vector of length
length(y)
indicating the the subsety[ry]
of elements iny
to which the imputation model is fitted. Thery
generally distinguishes the observed (TRUE
) and missing values (FALSE
) iny
.- x
Numeric design matrix with
length(y)
rows with predictors fory
. Matrixx
may have no missing values.- type
Vector of length
ncol(x)
identifying random and class variables. Random variables are identified by a '2'. The class variable (only one is allowed) is coded as '-2'. Random variables also include the fixed effect.- wy
Logical vector of length
length(y)
. ATRUE
value indicates locations iny
for which imputations are created.- intercept
Logical determining whether the intercept is automatically added.
- ...
Other named arguments.
Details
Implements the Gibbs sampler for the linear multilevel model with heterogeneous with-class variance (Kasim and Raudenbush, 1998). Imputations are drawn as an extra step to the algorithm. For simulation work see Van Buuren (2011).
The random intercept is automatically added in mice.impute.2L.norm()
.
A model within a random intercept can be specified by mice(...,
intercept = FALSE)
.
Note
Added June 25, 2012: The currently implemented algorithm does not
handle predictors that are specified as fixed effects (type=1). When using
mice.impute.2l.norm()
, the current advice is to specify all predictors
as random effects (type=2).
Warning: The assumption of heterogeneous variances requires that in every
class at least one observation has a response in y
.
References
Kasim RM, Raudenbush SW. (1998). Application of Gibbs sampling to nested variance components models with heterogeneous within-group variance. Journal of Educational and Behavioral Statistics, 23(2), 93–116.
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice
: Multivariate
Imputation by Chained Equations in R
. Journal of Statistical
Software, 45(3), 1-67. doi:10.18637/jss.v045.i03
Van Buuren, S. (2011) Multiple imputation of multilevel data. In Hox, J.J. and and Roberts, J.K. (Eds.), The Handbook of Advanced Multilevel Analysis, Chapter 10, pp. 173–196. Milton Park, UK: Routledge.
See also
Other univariate-2l:
mice.impute.2l.bin()
,
mice.impute.2l.lmer()
,
mice.impute.2l.pan()