Takes a mids
object, and produces a new object of class mids
.
Arguments
- obj
An object of class
mids
, typically produces by a previous call tomice()
ormice.mids()
- newdata
An optional
data.frame
for which multiple imputations are generated according to the model inobj
.- maxit
The number of additional Gibbs sampling iterations.
- printFlag
A Boolean flag. If
TRUE
, diagnostic information during the Gibbs sampling iterations will be written to the command window. The default isTRUE
.- ...
Named arguments that are passed down to the univariate imputation functions.
Details
This function enables the user to split up the computations of the Gibbs sampler into smaller parts. This is useful for the following reasons:
RAM memory may become easily exhausted if the number of iterations is large. Returning to prompt/session level may alleviate these problems.
The user can compute customized convergence statistics at specific points, e.g. after each iteration, for monitoring convergence. - For computing a 'few extra iterations'.
Note: The imputation model itself
is specified in the mice()
function and cannot be changed with
mice.mids
. The state of the random generator is saved with the
mids
object.
References
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice
:
Multivariate Imputation by Chained Equations in R
. Journal of
Statistical Software, 45(3), 1-67.
doi:10.18637/jss.v045.i03
Examples
imp1 <- mice(nhanes, maxit = 1, seed = 123)
#>
#> iter imp variable
#> 1 1 bmi hyp chl
#> 1 2 bmi hyp chl
#> 1 3 bmi hyp chl
#> 1 4 bmi hyp chl
#> 1 5 bmi hyp chl
imp2 <- mice.mids(imp1)
#>
#> iter imp variable
#> 2 1 bmi hyp chl
#> 2 2 bmi hyp chl
#> 2 3 bmi hyp chl
#> 2 4 bmi hyp chl
#> 2 5 bmi hyp chl
# yields the same result as
imp <- mice(nhanes, maxit = 2, seed = 123)
#>
#> iter imp variable
#> 1 1 bmi hyp chl
#> 1 2 bmi hyp chl
#> 1 3 bmi hyp chl
#> 1 4 bmi hyp chl
#> 1 5 bmi hyp chl
#> 2 1 bmi hyp chl
#> 2 2 bmi hyp chl
#> 2 3 bmi hyp chl
#> 2 4 bmi hyp chl
#> 2 5 bmi hyp chl
# verification
identical(imp$imp, imp2$imp)
#> [1] TRUE
#