The function pools the coefficients of determination R^2 or the adjusted
coefficients of determination (R^2_a) obtained with the lm
modeling
function. For pooling it uses the Fisher z-transformation.
Value
Returns a 1x4 table with components. Component est
is the
pooled R^2 estimate. Component lo95
is the 95 % lower bound of the pooled R^2.
Component hi95
is the 95 % upper bound of the pooled R^2.
Component fmi
is the fraction of missing information due to nonresponse.
References
Harel, O (2009). The estimation of R^2 and adjusted R^2 in incomplete data sets using multiple imputation, Journal of Applied Statistics, 36:1109-1118.
Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley and Sons.
van Buuren S and Groothuis-Oudshoorn K (2011). mice
: Multivariate
Imputation by Chained Equations in R
. Journal of Statistical
Software, 45(3), 1-67. doi:10.18637/jss.v045.i03
Examples
imp <- mice(nhanes, print = FALSE, seed = 16117)
fit <- with(imp, lm(chl ~ age + hyp + bmi))
# input: mira object
pool.r.squared(fit)
#> est lo 95 hi 95 fmi
#> R^2 0.4338408 0.06503877 0.7513683 0.4176739
pool.r.squared(fit, adjusted = TRUE)
#> est lo 95 hi 95 fmi
#> adj R^2 0.3507643 0.01771032 0.7091501 0.4617807
# input: mipo object
est <- pool(fit)
pool.r.squared(est)
#> est lo 95 hi 95 fmi
#> R^2 0.4338408 0.06503877 0.7513683 0.4176739
pool.r.squared(est, adjusted = TRUE)
#> est lo 95 hi 95 fmi
#> adj R^2 0.3507643 0.01771032 0.7091501 0.4617807