Imputation at level 2 by predictive mean matching
Source:R/mice.impute.2lonly.pmm.R
mice.impute.2lonly.pmm.Rd
Imputes univariate missing data at level 2 using predictive mean matching.
Variables are level 1 are aggregated at level 2. The group identifier at
level 2 must be indicated by type = -2
in the predictorMatrix
.
Arguments
- y
Vector to be imputed
- ry
Logical vector of length
length(y)
indicating the the subsety[ry]
of elements iny
to which the imputation model is fitted. Thery
generally distinguishes the observed (TRUE
) and missing values (FALSE
) iny
.- x
Numeric design matrix with
length(y)
rows with predictors fory
. Matrixx
may have no missing values.- type
Group identifier must be specified by '-2'. Predictors must be specified by '1'.
- wy
Logical vector of length
length(y)
. ATRUE
value indicates locations iny
for which imputations are created.- ...
Other named arguments.
Details
This function allows in combination with mice.impute.2l.pan
switching regression imputation between level 1 and level 2 as described in
Yucel (2008) or Gelman and Hill (2007, p. 541).
The function checks for partial missing level-2 data. Level-2 data
are assumed to be constant within the same cluster. If one or more
entries are missing, then the procedure aborts with an error
message that identifies the cluster with incomplete level-2 data.
In such cases, one may first fill in the cluster mean (or mode) by
the 2lonly.mean
method to remove inconsistencies.
Note
The extension to categorical variables transforms
a dependent factor variable by means of the as.integer()
function. This may make sense for categories that are
approximately ordered, but less so for pure nominal measures.
For a more general approach, see
miceadds::mice.impute.2lonly.function()
.
References
Gelman, A. and Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge, Cambridge University Press.
Yucel, RM (2008). Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response. Philosophical Transactions of the Royal Society A, 366, 2389-2404.
Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman & Hall/CRC. Boca Raton, FL.
See also
mice.impute.pmm
,
mice.impute.2lonly.norm
, mice.impute.2l.pan
,
mice.impute.2lonly.mean
Other univariate-2lonly:
mice.impute.2lonly.mean()
,
mice.impute.2lonly.norm()
Author
Alexander Robitzsch (IPN - Leibniz Institute for Science and Mathematics Education, Kiel, Germany), robitzsch@ipn.uni-kiel.de
Examples
# simulate some data
# x,y ... level 1 variables
# v,w ... level 2 variables
G <- 250 # number of groups
n <- 20 # number of persons
beta <- .3 # regression coefficient
rho <- .30 # residual intraclass correlation
rho.miss <- .10 # correlation with missing response
missrate <- .50 # missing proportion
y1 <- rep(rnorm(G, sd = sqrt(rho)), each = n) + rnorm(G * n, sd = sqrt(1 - rho))
w <- rep(round(rnorm(G), 2), each = n)
v <- rep(round(runif(G, 0, 3)), each = n)
x <- rnorm(G * n)
y <- y1 + beta * x + .2 * w + .1 * v
dfr0 <- dfr <- data.frame("group" = rep(1:G, each = n), "x" = x, "y" = y, "w" = w, "v" = v)
dfr[rho.miss * x + rnorm(G * n, sd = sqrt(1 - rho.miss)) < qnorm(missrate), "y"] <- NA
dfr[rep(rnorm(G), each = n) < qnorm(missrate), "w"] <- NA
dfr[rep(rnorm(G), each = n) < qnorm(missrate), "v"] <- NA
# empty mice imputation
imp0 <- mice(as.matrix(dfr), maxit = 0)
predM <- imp0$predictorMatrix
impM <- imp0$method
# multilevel imputation
predM1 <- predM
predM1[c("w", "y", "v"), "group"] <- -2
predM1["y", "x"] <- 1 # fixed x effects imputation
impM1 <- impM
impM1[c("y", "w", "v")] <- c("2l.pan", "2lonly.norm", "2lonly.pmm")
# turn v into a categorical variable
dfr$v <- as.factor(dfr$v)
levels(dfr$v) <- LETTERS[1:4]
# y ... imputation using pan
# w ... imputation at level 2 using norm
# v ... imputation at level 2 using pmm
# skip imputation on solaris
is.solaris <- function() grepl("SunOS", Sys.info()["sysname"])
if (!is.solaris()) {
imp <- mice(dfr,
m = 1, predictorMatrix = predM1,
method = impM1, maxit = 1, paniter = 500
)
}
#>
#> iter imp variable
#> 1 1 y w v