
Imputation by linear regression, bootstrap method
Source:R/mice.impute.norm.boot.R
mice.impute.norm.boot.RdImputes univariate missing data using linear regression with bootstrap
Arguments
- y
Vector to be imputed
- ry
Logical vector of length
length(y)indicating the the subsety[ry]of elements inyto which the imputation model is fitted. Therygenerally distinguishes the observed (TRUE) and missing values (FALSE) iny.- x
Numeric design matrix with
length(y)rows with predictors fory. Matrixxmay have no missing values.- wy
Logical vector of length
length(y). ATRUEvalue indicates locations inyfor which imputations are created.- ...
Other named arguments.
Details
Draws a bootstrap sample from x[ry,] and y[ry], calculates
regression weights and imputes with normal residuals.
References
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice:
Multivariate Imputation by Chained Equations in R. Journal of
Statistical Software, 45(3), 1-67.
doi:10.18637/jss.v045.i03
See also
Other univariate imputation functions:
mice.impute.cart(),
mice.impute.lasso.logreg(),
mice.impute.lasso.norm(),
mice.impute.lasso.select.logreg(),
mice.impute.lasso.select.norm(),
mice.impute.lda(),
mice.impute.logreg(),
mice.impute.logreg.boot(),
mice.impute.mean(),
mice.impute.midastouch(),
mice.impute.mnar.logreg(),
mice.impute.mpmm(),
mice.impute.norm(),
mice.impute.norm.nob(),
mice.impute.norm.predict(),
mice.impute.pmm(),
mice.impute.polr(),
mice.impute.polyreg(),
mice.impute.quadratic(),
mice.impute.rf(),
mice.impute.ri()