Imputation by the random indicator method for nonignorable data
Source:R/mice.impute.ri.R
mice.impute.ri.Rd
Imputes nonignorable missing data by the random indicator method.
Arguments
- y
Vector to be imputed
- ry
Logical vector of length
length(y)
indicating the the subsety[ry]
of elements iny
to which the imputation model is fitted. Thery
generally distinguishes the observed (TRUE
) and missing values (FALSE
) iny
.- x
Numeric design matrix with
length(y)
rows with predictors fory
. Matrixx
may have no missing values.- wy
Logical vector of length
length(y)
. ATRUE
value indicates locations iny
for which imputations are created.- ri.maxit
Number of inner iterations
- ...
Other named arguments.
Details
The random indicator method estimates an offset between the distribution of the observed and missing data using an algorithm that iterates over the response and imputation models.
This routine assumes that the response model and imputation model have same predictors.
For an MNAR alternative see also mice.impute.mnar.logreg
.
References
Jolani, S. (2012). Dual Imputation Strategies for Analyzing Incomplete Data. Dissertation. University of Utrecht, Dec 7 2012.
See also
Other univariate imputation functions:
mice.impute.cart()
,
mice.impute.lasso.logreg()
,
mice.impute.lasso.norm()
,
mice.impute.lasso.select.logreg()
,
mice.impute.lasso.select.norm()
,
mice.impute.lda()
,
mice.impute.logreg()
,
mice.impute.logreg.boot()
,
mice.impute.mean()
,
mice.impute.midastouch()
,
mice.impute.mnar.logreg()
,
mice.impute.mpmm()
,
mice.impute.norm()
,
mice.impute.norm.boot()
,
mice.impute.norm.nob()
,
mice.impute.norm.predict()
,
mice.impute.pmm()
,
mice.impute.polr()
,
mice.impute.polyreg()
,
mice.impute.quadratic()
,
mice.impute.rf()