Skip to contents

Create the ggmice equivalent of mice plots

How to re-create the output of the plotting functions from mice with ggmice. In alphabetical order of the mice functions.

First load the ggmice, mice, and ggplot2 packages, some incomplete data and a mids object into your workspace.

# load packages
library(ggmice)
library(mice)
library(ggplot2)
# load incomplete dataset from mice
dat <- boys
# generate imputations
imp <- mice(dat, method = "pmm", printFlag = FALSE)

bwplot

Box-and-whisker plot of observed and imputed data.

# original plot
mice::bwplot(imp, hgt ~ .imp)

# ggmice equivalent
ggmice(imp, aes(x = .imp, y = hgt)) +
  geom_boxplot() +
  labs(x = "Imputation number")

# extended reproduction with ggmice
ggmice(imp, aes(x = .imp, y = hgt)) +
  stat_boxplot(geom = "errorbar", linetype = "dashed") +
  geom_boxplot(outlier.colour = "grey", outlier.shape = 1) +
  labs(x = "Imputation number") +
  theme(legend.position = "none")

densityplot

Density plot of observed and imputed data.

# original plot
mice::densityplot(imp, ~hgt)

# ggmice equivalent
ggmice(imp, aes(x = hgt, group = .imp)) +
  geom_density()

# extended reproduction with ggmice
ggmice(imp, aes(x = hgt, group = .imp, size = .where)) +
  geom_density() +
  scale_size_manual(
    values = c("observed" = 1, "imputed" = 0.5),
    guide = "none"
  ) +
  theme(legend.position = "none")

fluxplot

Influx and outflux plot of multivariate missing data patterns.

# original plot
fluxplot(dat)

# ggmice equivalent
plot_flux(dat)

md.pattern

Missing data pattern plot.

# original plot
md <- md.pattern(dat)

# ggmice equivalent
plot_pattern(dat)

# extended reproduction with ggmice
plot_pattern(dat, square = TRUE) +
  theme(
    legend.position = "none",
    axis.title = element_blank(),
    axis.title.x.top = element_blank(),
    axis.title.y.right = element_blank()
  )

plot.mids

Plot the trace lines of the MICE algorithm.

# original plot
plot(imp, hgt ~ .it | .ms)

# ggmice equivalent
plot_trace(imp, "hgt")

stripplot

Stripplot of observed and imputed data.

# original plot
mice::stripplot(imp, hgt ~ .imp)

# ggmice equivalent
ggmice(imp, aes(x = .imp, y = hgt)) +
  geom_jitter(width = 0.25) +
  labs(x = "Imputation number")

# extended reproduction with ggmice (not recommended)
ggmice(imp, aes(x = .imp, y = hgt)) +
  geom_jitter(
    shape = 1,
    width = 0.1,
    na.rm = TRUE,
    data = data.frame(
      hgt = dat$hgt,
      .imp = factor(rep(1:imp$m, each = nrow(dat))),
      .where = "observed"
    )
  ) +
  geom_jitter(shape = 1, width = 0.1) +
  labs(x = "Imputation number") +
  theme(legend.position = "none")

xyplot

Scatterplot of observed and imputed data.

# original plot
mice::xyplot(imp, hgt ~ age)

# ggmice equivalent
ggmice(imp, aes(age, hgt)) +
  geom_point()

# extended reproduction with ggmice
ggmice(imp, aes(age, hgt)) +
  geom_point(size = 2, shape = 1) +
  theme(legend.position = "none")

Extensions

Interactive plots

To make ggmice visualizations interactive, the plotly package can be used. For example, an interactive influx and outflux plot may be more legible than a static one.

# load packages
library(plotly)
# influx and outflux plot
p <- plot_flux(dat)
ggplotly(p)

Plot multiple variables

You may want to create a plot visualizing the imputations of multiple variables as one object. To visualize multiple variables at once, the variable names are saved in a vector. This vector is used together with the functional programming package purrr and visualization package patchwork to map() over the variables and subsequently wrap_plots to create a single figure.

# load packages
library(purrr)
library(patchwork)
# create vector with variable names
vrb <- names(dat)

Display box-and-whisker plots for all variables.

# original plot
mice::bwplot(imp)

# ggmice equivalent
p <- map(vrb, ~ {
  ggmice(imp, aes(x = .imp, y = .data[[.x]])) +
    geom_boxplot() +
    scale_x_discrete(drop = FALSE) +
    labs(x = "Imputation number")
})
wrap_plots(p, guides = "collect") &
  theme(legend.position = "bottom")

Display density plots for all variables.

# original plot
mice::densityplot(imp)

# ggmice equivalent
p <- map(vrb, ~ {
  ggmice(imp, aes(x = .data[[.x]], group = .imp)) +
    geom_density()
})
wrap_plots(p, guides = "collect") &
  theme(legend.position = "bottom")

Display strip plots for all variables.

# original plot
mice::stripplot(imp)

# ggmice equivalent
p <- map(vrb, ~ {
  ggmice(imp, aes(x = .imp, y = .data[[.x]])) +
    geom_jitter() +
    labs(x = "Imputation number")
})
wrap_plots(p, guides = "collect") &
  theme(legend.position = "bottom")


This is the end of the vignette. This document was generated using:

sessionInfo()
#> R version 4.4.1 (2024-06-14)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 22.04.4 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0
#> 
#> locale:
#>  [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8       
#>  [4] LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8   
#>  [7] LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C          
#> [10] LC_TELEPHONE=C         LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   
#> 
#> time zone: UTC
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] patchwork_1.2.0   purrr_1.0.2       plotly_4.10.4     ggplot2_3.5.1    
#> [5] mice_3.16.0       ggmice_0.1.0.9000
#> 
#> loaded via a namespace (and not attached):
#>  [1] gtable_0.3.5      shape_1.4.6.1     xfun_0.46         bslib_0.7.0      
#>  [5] htmlwidgets_1.6.4 lattice_0.22-6    crosstalk_1.2.1   vctrs_0.6.5      
#>  [9] tools_4.4.1       generics_0.1.3    tibble_3.2.1      fansi_1.0.6      
#> [13] highr_0.11        pan_1.9           pkgconfig_2.0.3   jomo_2.7-6       
#> [17] Matrix_1.7-0      data.table_1.15.4 desc_1.4.3        lifecycle_1.0.4  
#> [21] compiler_4.4.1    farver_2.1.2      stringr_1.5.1     textshaping_0.4.0
#> [25] munsell_0.5.1     codetools_0.2-20  htmltools_0.5.8.1 sass_0.4.9       
#> [29] lazyeval_0.2.2    yaml_2.3.9        glmnet_4.1-8      pillar_1.9.0     
#> [33] pkgdown_2.1.0     nloptr_2.1.1      jquerylib_0.1.4   tidyr_1.3.1      
#> [37] MASS_7.3-60.2     cachem_1.1.0      iterators_1.0.14  rpart_4.1.23     
#> [41] boot_1.3-30       foreach_1.5.2     mitml_0.4-5       nlme_3.1-164     
#> [45] tidyselect_1.2.1  digest_0.6.36     stringi_1.8.4     dplyr_1.1.4      
#> [49] labeling_0.4.3    splines_4.4.1     fastmap_1.2.0     grid_4.4.1       
#> [53] colorspace_2.1-0  cli_3.6.3         magrittr_2.0.3    survival_3.6-4   
#> [57] utf8_1.2.4        broom_1.0.6       withr_3.0.0       scales_1.3.0     
#> [61] backports_1.5.0   httr_1.4.7        rmarkdown_2.27    nnet_7.3-19      
#> [65] lme4_1.1-35.5     ragg_1.3.2        evaluate_0.24.0   knitr_1.48       
#> [69] viridisLite_0.4.2 rlang_1.1.4       Rcpp_1.0.13       glue_1.7.0       
#> [73] minqa_1.2.7       jsonlite_1.8.8    R6_2.5.1          systemfonts_1.1.0
#> [77] fs_1.6.4